Polarity Sensitivity of *Even* in Early Child Grammar

Yadav Gowda, Elise Newman, Martin Hackl, and Leo Rosenstein (MIT)

What's the status of scalar inferences in child grammar?

English *even* provides us with a useful domain in which to investigate this question.

Even:

- Has scalar inferences derived through a presupposition
- Triggers different presuppositions depending on the environment
- Triggers presuppositions associated with a scale of likelihood.

Even

English *even* is a scalar particle, which triggers a least-likely presupposition in positive sentences, and a most-likely presupposition in negative sentences, in addition to a negative/positive existential presupposition. (K&P 1979)

- 1. Even JOHN came to the party.
 - John was the least-likely to come to the party.
 - There were other people that came to the party.
- 2. Even JOHN didn't come to the party.
 - John was the most-likely to come to the party.
 - No one else (out of some salient context set) came to the party.

Previous Work

Kim 2011 tested acquisition of *even* and *only* in children following Filik et al. (2009), who found that adults process *even* more slowly than *only*

Kim's hypothesis: given that children already have a hard time with *only*, they should learn *even* even later.

She argues her hypothesis is borne out: children don't know even.

Kim's Setup

30 children, ages 4-5

The three bears were very excited about eating the cookies. Each bear tried to reach the cookies on the shelf and managed to do so. Mama Bear said, "**Even Larry was able to reach the cookie**."

Kim's Results

		affirmative pre-subject even				negative pre-subject even			
		item1	item2	item3	total	item1	item2	item3	total
	Adults	30/30	30/30	30/30	90/90	30/30	30/30	29/30	89/90
	(n=30)				100%				98.6%
<	Children	13/30	12/30	16/30	41/90	17/30	14/30	11/30	42/90
	(n=30)				45.6%				46.7%

<Table 4.3. Mean percentage of correct responses to test sentences in both groups>

Kim's Results

Selection pattern	target characters for both sentence types	opposite characters for both sentence types	always rightmost or leftmost character
rate of responses	33.3% (30/90)	38.9% (35/90)	27.8% (25/90) (22.2% for rightmost, 5.6% for leftmost)

<Table 4.7. Rate of responses out of different types of pragmatics for test sentences in children's group>

No middle characters were chosen! This means that the rate of adult-like responses is roughly chance.

Kim concludes...

... that children basically don't know *even* at ages 4-5 (slight age effect)

Our questions:

- What is the developmental trajectory for *even*?
 - Kim only looked at 4-5 year-olds.
- What reasoning do children use when evaluating *even*?
 - Kim did not systematically record children's justifications
- Why don't any children choose the middle character?
 - None of Kim's control or target items targetted the middle character.
- What if we change the scale types to pick out different characters?
 - In Kim's study, the least-likely character was always leftmost and most-likely rightmost.

- 75 children, ages 3-6
- 4 different scales (8 total target stories with positive/negative distinction)
- 4 filler stories that target middle character
- Blocked design in two orders, negative-first or positive-first.
- Children are asked to justify their answers
- Data collected at Boston-area daycares, preschools, and at the Museum of Science

Reaching stories:

Positive: "Even Benny was able to reach an apple!"

Negative: "Even Jessiepillar wasn't able to reach a book!"

00

Lifting/Weight stories:

Positive: "Even Rufus was able to lift a pumpkin!"

Negative: "Even Henrietta wasn't able to lift a bowling ball!"

Fitting stories:

Positive: "Even Frankie was able to fit into the socks!"

Negative: "Even Mary wasn't able to fit in the hole!"

Filling/Capacity stories:

Positive: "Even Sammy was able to fill up his basket!"

Negative: "Even Frida wasn't able to fill her cup!"

Sample filler story:

"Marcus picked the yellow chair that matched his party hat!"

Distribution of response types by age group

While 3 year-olds are not significantly more likely to associate a least-likely inference with a positive environment, 4-6 year olds are!

Children do know something about even!

- They're significantly more likely to give extrema responses than middle responses, suggesting that they know that even is scalar.
- 4-6 year olds are starting to associate polarity with the correct likelihood inference.

- Analyzed data using a linear mixed-effects logistic regression
- Stacked binomial analysis: first middle against extrema, then extrema against one another
- Fully specified model does not converge
- A simplified analysis not taking order into account as a main effect shows a significant effect of polarity on accuracy only in 4-year-olds (p=0.008)

Fully specified model: correct ~ 1 + polarity*order + (1|item) + (1 + polarity|subject)

Same polarity effect: Negative > Positive

Justifications suggest that children are using scalar reasoning to understand even!

Justifications		Justification Type						
Response		none	random	scale	Grand Total			
smallest	1	69	14	195	278			
middle	2	45	17	15	77			
largest	3	68	13	175	256			
Grand Total		182	44	385	611			

We got middle responses! Middle responses are a measure of confusion -- the middle character is never the least-likely nor most-likely.

Justifications		Justification Type						
Response		none	random	scale	Grand Total			
smallest	1	69	14	195	278			
middle	2	45	17	15	77			
largest	3	68	13	175	256			
Grand Total		182	44	385	611			

Kim claimed to find a population of 'flippers', that is, children who gave the opposite response as adults (biggest -> smallest, and vice versa).

• About a third of her subjects

Two of our subjects conformed with this behavior

• They gave not only answers, but justifications consistent with having a 'flipped' definition for only.

Discussion

We frame these results in the space of possible meanings of scalar particles, based in part on a similar framing in Giannakidou (2007):

Scalar / existential	Positive	Negative		
Bottom-of-scale (Least-likely)	even	even _{FLIPPED} /especially?		
Top-of-scale (Most-likely)	even _{FLIPPED} /especially?	even		

English *even* populates two quadrants in this matrix: our evidence suggests that these two spaces are not ranked equally by learners... why?

Discussion

There are two properties of the presuppositions in the lower-right corner that we think are relevant:

- 1. Association with negative environment
- 2. Noteworthiness of the scalar presupposition in a negative environment

Scalar / existential	Positive	Negative
Bottom-of-scale (Least-likely)	even	even _{FLIPPED} /especially?
Top-of-scale (Most-likely)	even _{FLIPPED} /especially?	even

NPIs

Tieu 2010 shows a similar asymmetry in production between NPI and Free Choice *any* -- there is a statistically significant difference between the onset of NPI *any* and FC *any*.

Grammatical Conservatism (Snyder 2007): Children wait until they have clear evidence of the grammatical parameters of a construction to produce it.

NPI environments often have clear indicators (e.g. not, if...)

Theories of even

An ongoing debate in the semantics literature concerns the nature of English *even*, given the ambiguity we just saw.

Ambiguity theory (Rooth 1985): *even* is actually two lexical items, *even*_{POS} and *even*_{NPI}.

Single even story (K&P 1979) :There's a single *even*, which moves covertly outside of negative and other downward-entailing contexts to be interpreted.

Conclusion

- Children have an understanding of *even*'s scalar properties!
- Three stages of development:
 - 3yo no clear understanding
 - 4yo polarity sensitive understanding (NEG > POS)
 - 5-6yo *even* in POS environments catches up
- We argue this polarity sensitivity can be understood as a result of the identifiability of *even* in negative environments
- "Flipped responses" they do exist! About 20% of responses across age-groups
- "Flippers" What do they say about children's scalar meaning spaces?

Thank you!

References

- 1. Branan, K. (2015). Even paper. Term paper for 24.965, MIT.
- 2. Crain, S., Ni, W., and Conway, L. (1994). *Learning, parsing and modularity*. In Clifton, C. J., Frazier, L., and Rayner, K., editors, Perspectives on sentence processing, pages 443–467. Lawrence Erlbaum, Hillsdale, NJ.
- 3. Giannakidou, Anastasia. "The landscape of EVEN". *NLLT* 25(1). 2007.
- 4. Hackl, M., Sugawara, A., and Wexler, K. (2015). *Question-answer (in)congruence in the acquisition of only*. In Grillo, E. and Jepson, K., editors, Proceedings of the 39th Annual Boston University Conference on Language Development. Cascadilla Press, Somerville, MA.
- 5. Karttunen, Lauri and Peters, Stanley. "Conventional implicature". Syntax and semantics, volume 11: Presupposition. 1979.
- 6. Kim, Soyoung. Focus particles at syntactic, semantic and pragmatic interfaces: the acquisition of only and even in English. University of Hawaii, Manoa dissertation. 2011.
- 7. Notley, A., Zhou, P., Crain, S., and Thornton, R. (2009). *Children's interpretation of focus expressions in english and mandarin*. Language Acquisition, 16(4):240–282.
- 8. Rooth, M. (1985). Association with focus. PhD thesis, University of Massachusetts Amherst.
- 9. Sugawara, A. (2016). The role of Question-Answer Congruence (QAC) in child language and adult sentence processing. PhD thesis, MIT.

AVERAGE of correct		age_group				
polarity	story	3	4	5	6	Grand Total
neg	capacity	20.00%	37.50%	70.00%	45.00%	45.95%
	fit	33.33%	78.26%	85.00%	89.47%	77.46%
	reach	44.44%	87.50%	80.00%	95.24%	82.43%
	weight	60.00%	91.30%	70.00%	95.24%	82.43%
neg Total		39.47%	73.40%	76.25%	81.48%	72.01%
pos	capacity	30.00%	25.00%	31.58%	40.00%	31.51%
	fit	60.00%	33.33%	70.00%	80.95%	60.00%
	reach	40.00%	66.67%	70.00%	85.71%	69.33%
	weight	60.00%	70.83%	90.00%	95.24%	81.33%
pos Total		47.50%	48.96%	65.82%	75.90%	60.74%

Adult study

- Norming study on 60 adults with stimuli from the child experiment, done on Mechanical Turk
- Adults performed at >80% accuracy
- No statistically significant difference between positive and negative environments in either accuracy or reaction times.

Conclusion: it seems that the previously observed polarity effect is an acquisition phenomenon, not a feature of the adult system

Sample justifications

Scalar:

"Because it's rare that a tiny thing can lift a big thing" "teeny one" "littlest basket"

"Because it's the biggest" "small mouses can usually fit"

"Because he was able to even though it was heavy"

Random:

"Look at the pink bunny!" "because I just knew it" "he's the brownest"

"He's two [years old]" "she looks like Sammy"

"That one has a little bow"